Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Change in the electrical performance of InGaAs quantum dot solar cells due to irradiation

Oshima, Takeshi; Sato, Shinichiro; Morioka, Chiharu*; Imaizumi, Mitsuru*; Sugaya, Takeyoshi*; Niki, Shigeru*

Proceedings of 35th IEEE Photovoltaic Specialists Conference (PVSC-35) (CD-ROM), p.002594 - 002598, 2010/06

 Times Cited Count:3 Percentile:78.31(Energy & Fuels)

Quantum Dot (QD) solar cells are regarded as promising candidate for solar cells with superior high efficiency. For space application, it is important to understand radiation effects in such QD solar cells. However, radiation response of QD solar cells has not yet been clarified. In this study, we irradiate QD solar cells with electrons, and investigate change in the electrical performance of the QD solar cells. PiN structure solar cells with self-organized InGaAs QD layers grown on GaAs (001) substrates by MBE were used in this study. The efficiency for the 30 QD layer solar cells without anti-reflector coating is 7.0% under AM 1.5 at 25 $$^{circ}$$C. The samples were irradiated with electrons at 1 MeV at room temperature. The current-voltage characteristics under AM0 and the quantum efficiency (QE) were measured before and after irradiations. Electron irradiation effects on single junction GaAs solar cells fabricated under the same process were also studied for comparison. The value of QE for both the GaAs solar cells with and without QD layers slightly decreases due to the irradiation at 1$$times$$10$$^{13}$$/cm$$^{2}$$, and no remarkable decrease in the increment of the QE in a long wavelength region due to the existence of QDs is observed.

Journal Articles

Photo- and dark conductivity variations of solar cell quality a-Si:H thin films irradiated with protons

Sato, Shinichiro; Sai, Hitoshi*; Oshima, Takeshi; Imaizumi, Mitsuru*; Shimazaki, Kazunori*; Kondo, Michio*

Proceedings of 35th IEEE Photovoltaic Specialists Conference (PVSC-35) (CD-ROM), p.002620 - 002624, 2010/06

 Times Cited Count:2 Percentile:71.34(Energy & Fuels)

Journal Articles

Study the effects of proton irradiation on GaAs/Ge solar cells

Elfiky, D.*; Yamaguchi, Masafumi*; Sasaki, Takuo*; Takamoto, Tatsuya*; Morioka, Chiharu*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Elnawawy, M.*; Eldesuky, T.*; et al.

Proceedings of 35th IEEE Photovoltaic Specialists Conference (PVSC-35) (CD-ROM), p.002528 - 002532, 2010/06

 Times Cited Count:6 Percentile:87.63(Energy & Fuels)

Proton energy dependence of radiation damage to GaAs/Ge solar cells irradiated with protons with various energies (50 keV, 200 keV, 1 MeV and 9.5 MeV) were analyzed by using PC1D simulation together with SRIM simulations to investigate their electrical properties. The degradation of the open-circuit voltage is highest for 50 keV irradiation and lowest for 9.5 MeV irradiation. According to SRIM simulations the above changes in electrical properties are mainly related to damage in different regions of the solar sells.

3 (Records 1-3 displayed on this page)
  • 1